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Abstract 
 
This chapter reviews multi-stage financial planning models, with a focus on practical 
approaches for optimizing investors’ performance over time. We discuss two major 
frameworks for constructing financial planning models: 1) policy rule simulation and 
optimization; and 2) multi-stage stochastic programming. We advocate an integrated 
approach, in which a stylized stochastic program helps the investor discover robust 
decision/policy rules. In the second stage, the policy optimizer compares policy rules as 
well as provides detailed information about future investment performance. To illustrate 
benefits, we apply the dual strategy to defined benefit pension plans in the United States. 
 
 
I. Introduction 
 
Multi-stage financial planning models offer significant advantages over the classical 
single-stage (static) portfolio approaches. First, importantly, investment performance is 
enhanced by capturing “rebalancing gains” when a portfolio is modified.  Rebalancing a 
portfolio can be considered as an option – to be exercised when adding value to the 
investors’ performance. Second, a multi-stage model can address many real-world issues 
in considerable detail -- such as transaction-market impact costs, dynamic correlation 
structures, integrating assets with liability and goals over time, and decisions that are 
conditioned on the state of the economy.  These issues are difficult to model within a 
single period framework. In a similar fashion, a multi-stage model can readily depict 
temporal goals and objectives. For instance, we can include stopping rules that activate 
when a target wealth value is reached. See Dantzig and Infanger (1993), Consigli and 
Dempster (1998), Mulvey and Ziemba (1998), and Mulvey et al. (2003) for examples. A 
theoretical discussion can also be found in Fernholz and Shay (1982) and Luenberger 
(1998). 
 
Unfortunately, multi-stage financial models possess two significant interrelated 
drawbacks: 1) they give rise to complex models and require extensive computational 
resources, and 2) the modeling recommendations are difficult to understand by decision 
makers. While there are numerous stochastic programming applications appearing in the 
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academic field, many investors are simply unable to grasp the complexity of a multi-stage 
stochastic program, and accordingly, are often reluctant to “trust” the model’s 
recommendations for assigning their capital.  
 
To overcome these barriers, we advocate a dual strategy illustrated in Figure 1. In the 
first stage of the dual approach, investors apply a simplified (stylized) stochastic program 
to generate an optimal set of decisions defined over a scenario tree. Since decisions can 
occur anywhere in the feasible region as defined by the constraints, the stochastic 
program will offer general recommendations. However, by its nature, a stochastic 
program must present a simplified view of the real-world, which may lead to a non-
robust optimal solution.  
 
Therefore, in the second stage, a more detailed policy simulation-optimization approach 
is adopted. Unlike the stochastic program with generic decisions, the decisions in a policy 
simulator must be a function of a formal policy/decision rule.  Also, the policy rules 
cannot employ information that is unavailable to the investor at a given time period; the 
model must enforce non-anticipativity. Since these approaches are complementary to 
each other, the dual strategy can not only help create a set of new policy rules but also 
evaluate the rules with respect to robustness.  
 

Figure 1 
Illustration of the Dual Strategy 

 

 
To illustrate, we apply the dual strategy to an important problem in the area of asset and 
liability management -- U.S. defined benefit (DB) pension trusts.  The major goals of the 
integrated ALM model for DB pension trusts are to satisfy the interests of several entities 
– shareholders, sponsoring company, retirees and regulators (public) – which may 
conflict each other. For instance, for the shareholders, the goal should be to maximize 
value for the company, minimize present value (and volatility) of contribution for the 
pension trust. Providing an adequate level of safety for the pension plan and future 
beneficiaries would be the main objectives for the retirees. On the other hand, the 
regulators would minimize the possibility of the bankruptcy and plan termination. 
Therefore, there goals are best satisfied by constructing a multi-objective model whose 
output consists of a set of efficient frontiers. 
 
There are numerous examples of stochastic programs implemented in different countries.  
A noteworthy early application is the Russell system for the Yasuda Insurance Company 
in Japan (Cariño et al., 1994). Mulvey et al. (2000) depicts the details of Towers Perrin 
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CAP:Link system. Geyer et al. (2005) describe the financial planning model InnoALM 
developed by Innovest for Austrian pension funds. Hilli et al. (2003) develop a stochastic 
program for a Finnish pension company; their empirical study indicates that the results 
under the stochastic program outperform those under traditional fixed-mix strategies. 
Pflug et al. (2000) developed a modular decision support tool for asset-liability 
management – the AURORA Financial Management System at the University of Vienna. 
Pflug and Swietanowski (2000) also show that the non-convexity of the ALM model can 
be resolved by approximating it to a convex problem. Dutch researchers have also 
achieved success in implementing ALM models for pension planning. Boender et al. 
(1998) describe the ORTEC model. The doctoral dissertation of Dert (1995) presents a 
scenario-based model for analyzing investment/funding policies of Dutch defined benefit 
pension plans. Ziemba and Mulvey (1998), Arbeleche et al. (2003), Mulvey et al. (2004a), 
Kouwenberg and Zenios (2006), Dempster et al. (2006) and Zenios and Ziemba (2006, 
2007) provide examples of related implementations.  Also, Ziemba and Mulvey (1998) 
and Ziemba (2003) include examples of successful asset and liability management 
(ALM) systems within a multi-period setting.  Fabozzi et al. (2004) discuss applications 
of ALM in European pension funds.   
 
Several researchers have studied ALM problems in a continuous-time setting. Chapter 5 
of Campbell and Viceira (2002) provide an introduction to strategic asset allocation in 
continuous time. A group of ALM models extend the early approach of Merton (1973). 
Rudolf and Ziemba (2004) present such a continuous time model for pension fund 
management. Although stochastic-control models have difficulty in incorporating 
practical and legal constraints of pension plans, they possess the advantage of producing 
intuitive closed-form solutions or solving the system of equations satisfying optimality 
conditions numerically in many cases. 
 
The remainder of the chapter is organized as follows. The next section illustrates the 
advantage of multi-period models for the asset-only investors to improve asset allocation 
decision with several practical examples. In the section III, we apply the dual strategy to 
the DB pension problems in the United States. The final section provides conclusions and 
future research topics. 
 
 
II. Multi-Period Models for Asset-only Allocation 
 
This section illustrates the advantages of applying multi-period portfolio approaches. We 
begin with the well-know fixed-mix investment rule due to its simplicity and profitability. 
Also, we provide several prominent examples that employ the fixed-mix approach for 
asset-only investors.  This policy rule serves as a benchmark both for other types of rules 
and for the recommendations of a stochastic programming model.  
 
II.1 Fixed Mix Policy Rules 
 
First, we describe the performance advantages of the fixed-mix rule over a static, buy-
and-hold perspective. This rule generates greater return than the static model by means of 
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rebalancing.  The topic of re-balancing gains (also called excess growth or volatility 
pumping) as derived from the fixed-mix decision rule is well understood for a theoretical 
perspective. The fundamental solutions were developed by Merton (1969) and Samuelson 
(1969) for long-term investors. Further work was done by Fernholz and Shay (1982), and 
Fernholz (2002). Luenberger (1998) presents a clear discussion. We illustrate how 
rebalancing the portfolio to a fixed-mix creates excess growth. Suppose that a stock price 
process Pt is lognormal so it can be represented by the equation 
 

 t t t tdP Pdt Pdzα σ= +            (1) 
  
whereα is the rate of return of Pt and 2σ is its variance, zt is Brownian motion with mean 
0 and variance t. 
 
The risk-free asset follows the same price process with rate of return equal to r and 
standard deviation equal to 0.  We represent the price process of risk-free asset by Bt:  
 

 t tdB rB dt=             (2) 
 
When we integrate the equation (1), the resulting stock price process is 
 

 0

2( 2)et
tt zP P α σ σ− +=           (3) 

 
It is well documented that the growth rate 2 2γ α σ= −  is the most relevant measure for 
long-run performance. For simplicity, we assume equality of growth rates across all 
assets. This assumption is not required for generating excess growth, but it makes the 
illustration easier to understand. 
 
Next, let’s assume that the market consists of n stocks, each with stock price 
processes 1, ,,...,t n tP P  following the lognormal process. A fixed-mix portfolio has a wealth 
process Wt that can be represented by the equation 
 

 1 1, 1, , ,...t t t n n t n ttdW W dP P dP Pη η= + +         (4) 
 
where 1,..., nη η are the fixed weights given to each stock (proportion of capital allocated to 
each stock). In this case, the weights sum up to one  
 

 
1
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i
i
η

=

=∑             (5) 

 
The fixed-mix strategy in continuous time always applies the same weights to stocks over 
time. The instantaneous rate of return of the fixed-mix portfolio at anytime is the 
weighted average of the instantaneous rates of returns of the stocks in the portfolio. 
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In contrast, a buy-and-hold portfolio is one where there is no rebalancing and therefore 
the number of shares for each stock remains constant over time. This portfolio can be 
represented by the wealth process Wt : 
 

 1 1, ,...t t n n tdW m dP m dP= + +           (6) 
 
where 1,..., nm m  depicts the number of shares for each stock.  
 
Again for simplicity, let’s assume that there is one stock and a risk-free instrument in the 
market. This case is sufficient to demonstrate the concept of excess growth in a fixed-mix 
portfolio as originally presented in Fernholz and Shay (1982). Assume that we invest η 
portion of our wealth in the stock and the rest (1-η) in the risk-free asset. Then the wealth 
process Wt with these constant weights over time can be expressed as 
  

 (1 )t t t t ttdW W dP P dB Bη η= + −          (7) 
  
where Pt is the stock price process and Bt is the risk-free asset.  
 
When we substitute the dynamic equations for Pt and Bt, we get  
 

 ( ( ))t ttdW W r r dt dzη α ησ= + − +          (8) 
 
Assuming the growth rate of all assets in the ideal market should be the same over long-
time periods, the growth rate of the stock and the risk-free asset should be equal. Hence  
 

 2 2 rα σ− =             (9) 
 
From equation (8), we can see that the rate of return of the portfolio, ωα , is 
 

 ( )w r rα η α= + −          (10) 
 
By using (9), this rate of return is equal to 
 

 2 2w rα ησ= +          (11) 
 
The variance of the resulting portfolio is 
 

 2 2 2
wσ η σ=           (12) 

 
Hence the growth rate of the fixed-mix portfolio becomes 
 

 2 2 22 ( ) 2w w w rγ α σ η η σ= − = + −       (13) 
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This quantity is greater than r for 0 1η< < . As it is greater than r, which is the growth 
rate of individual assets, the portfolio growth rate has an excess component, which 
is 2 2( ) 2η η σ− . Excess growth is due to rebalancing the portfolio constantly to the target 
fixed-mix. The strategy moves capital out of stock when it performs well and moves 
capital into stock when it performs poorly. By moving capital between the two assets in 
the portfolio, a higher growth rate than each individual asset is achievable. It can be 
shown that the buy-and-hold investor with equal returning assets lacks the excess growth 
component. Therefore, buy-and-hold portfolios under-perform fixed-mix portfolios in 
various cases. We can easily see that the excess growth component is larger whenσ  
takes a higher value.  
 
II.2 Examples of Fix-Mix Policy Rules 
 
Many investors have applied versions of the fixed-mix rules with practical successes. For 
example, the famous 60/40 norm (60% equity and 40% bonds) falls under this policy. 
Here, at each period, we rebalance the portfolio to 60% equity and 40% bond. Another 
good example is S&P 500 equal-weighted index (S&P EWI) by Rydex Investments 
(Mulvey, 2005). As opposed to traditional cap-weighted S&P index, stocks have the 
same weight (1/500) and the index is rebalanced semi-annually to maintain the weights 
over time. To illustrate the benefits of applying the fixed mix policy rule, during 
1994~2005, S&P EWI achieved 2% excess return with only 0.6% extra volatility 
compared to S&P 500 index. Figure 2 illustrates log-prices of S&P 500 and S&P EWI for 
last 4 years3. 
 

Figure 2 
Log-Prices of S&P 500 Index and S&P EWI during Jul.2003~Dec.2006 

This figure illustrates the log price processes for S&P EWI and S&P 500 from Jul.2003 to Dec.2006. Each 
index is scaled to have a log-price of 0 at the beginning of the sample period. In term of the total return, 
S&P EWI outperformed S&P 500 index for last 4 years and this performance difference between 2 assets 
can be interpreted as a rebalancing gain due to the fixed mix policy rule. 
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3 The advantages of the equal weighted S&P 500 index is partially due to rebalancing gains and partially 
due to the higher performance of mid-size companies over the discussed period.  
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Figure 3 
Decomposition of MLM Index returns for different time periods 

The total return of the MLM index can be decomposed into three parts – 1) trend following returns, 2) T-
bill returns and 3) rebalancing gains. Rebalancing portfolio provided positive returns over 1991-2007. 
 

 
 
Another significant example involves the Mount Lucas Management (MLM) Index 
(Mulvey et al., 2004b). It is an equally weighted, monthly rebalanced investment in 
twenty-five futures contracts in commodity, fixed income, and currency markets. Briefly, 
the monthly positions (long or short) are determined by trend following strategies (long 
or short depending upon a trend line). The total return of the MLM Index can be 
decomposed into three parts. The first one is the T-bill return gained from the capital 
allocated for margin requirements. The second component is generated by trend 
following the futures prices. The third component, rebalancing gains, is earned when all 
markets are invested with fixed weights at the beginning of each month. If trend 
following strategy had been applied to all the markets without reweighing at each month, 
then there would be no rebalancing gains. Figure 3 shows how those three components 
affected the total return of the MLM Index for selected time periods. Trend following has 
underperformed its long term averages for the last several years. Still, rebalancing 
provided positive returns over the recent period. These empirical results show how 
periodic reallocation of capital among diverse markets boosts the performance of a long 
term investment strategy with the contribution of rebalancing gains. 
 
Mulvey and Kim (2007a) illustrate how the fixed mix rule can improve performance in 
the realm of alternative investments. Their analysis constructs three portfolios: (P1) a 
buy-and-hold portfolio of only traditional assets, (P2) a buy-and-hold portfolio of 
traditional and alternative assets, (P3) a fixed mix portfolio of both traditional and 
alternative assets. In this regard, they employ the fixed-mix rule at two levels. First at the 
stock selection level, they substitute an equal-weighted S&P 500 index for the capital-
weighted S&P 500 fund. The equal weighted index has generated better performance 
over the standard S&P500 index, as would be expected due to the additional returns 
gotten from re-balancing the mix. Then, the portfolio is rebalanced monthly to fulfill the 
fixed mix policy rule at the asset selection level. Figure 4 illustrate the investment 
performance of each of three portfolios. Note that several degrees of leverage – at several 
values: 20%, 50%, and 100% are applied to each portfolio. From the figure, it is evident 
that applying fixed mix rules can improve investment performance.  



 8

Figure 4 
Efficient Frontiers of the Portfolios with/without Alternative Assets 

Left figure illustrates efficient frontiers in volatility-return plane, while right one is drawn in maximum 
drawdown-return plane. The efficient frontier of P3 contains those of P1 and P2 in both cases, which 
clearly exhibit the role of alternative assets in portfolio construction. 

 
Portfolio Description Constituents 

P1 Traditional Assets Only 
(Buy-and-Hold) Traditional assets: SP500, LB Bond, EAFE, NAREIT, GSCI, STRIPS 

P2 With Alternative Assets 
(Buy-and-Hold) 

Traditional assets: SP500, LB Bond, EAFE, NAREIT, GSCI, STRIPS 
Alternative assets: Man Futures, Hedge Fund Ind., L/S Ind., Currency 

P3 With Alternative Assets 
(Fixed Mix) 

Traditional assets: SP EWI, LB Bond, EAFE, NAREIT, GSCI, STRIPS 
Alternative assets: Man Futures, Hedge Fund Ind., L/S Ind., Currency 
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The fixed-mix approach can also improve investment performance in the face of 
parameter uncertainty.  A good example is the “dynamic diversification” strategy, which 
is a fixed mix portfolio consisting of various momentum strategies in several stock 
markets, suggested by Mulvey and Kim (2007b).  
 
Herein, we develop a new decision rule based on momentum in equity markets.  This rule 
is applied in conjunction with fixed-mix within a portfolio context. There is a 
considerable amount of literature on the predictability of stock returns based on its past 
performance. De Bondt and Thaler (1985, 1987) argue that the “loser” portfolio shows 
superior performance to the “winner” portfolio over the following 3 to 5 years. Lehmann 
(1990) and Jegadeesh (1990) illustrate short-term return reversals of “winner” and “loser” 
stocks. Also, Jegadeesh and Titman (1993) report the momentum of stock returns for the 
intermediate term (3 to 12 months). Rouwenhorst (1998), Kang et al. (2002), Demir et al. 
(2004) and Cleary et al. (1998) provide the evidence of the profitability of the momentum 
strategy in overseas stock markets. Among many variants of the momentum strategies 
such as the 52-week high momentum portfolio (George and Hwang, 2004) and the 
market index momentum portfolio (Chan et al, 2000), we examine the industry-level 
momentum strategy.  
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Beside the rebalancing gains, applying the fixed mix approach to various settings of the 
momentum strategy has another advantage. Although its profitability is widely accepted, 
the performance of strategies depends on parameter selection such as the evaluation 
period, the holding period, etc. However, by forming a portfolio of momentum strategies 
(via fixed-mix), the resulting portfolio is much less dependent on the parameters, thus 
provides robust performance. 
 
To construct a “dynamic diversification” portfolio of equity positions, we first generate 
industry-level momentum strategies that follow the rules of the relative strength portfolio 
of Jegadeesh and Titman (1993). The implemented algorithm applies the following rules: 
At the beginning of the sample period, all industries defined as in Datastream service 
with return history of at least t2-month are ranked based on their past t1- and t2-month 
returns (t1 < t2). Then industries in the first decile (four industries) from each t1 and t2 
ranking lists are chosen to be put into the portfolio with the equal weight (eight industries 
total). If an industry is shown in the top decile for both past t1 and t2 months, we place a 
double-weight on it. The equal weighted portfolio is held for the given holding period (H) 
without any rebalancing and we repeat the industry-selecting process after H-month. We 
construct the momentum strategies with six different settings for (t1, t2) observation 
length pair – (3,6), (3,9), (3,12), (6,12), (6,18) and (12,18) – and four different holding 
periods – 3, 6, 9, 12. In our empirical study, we apply a scoring approach based on recent 
historical returns. These rules are applied in five non-overlapping regions – US, EU, 
Europe except EU, Japan and Asia except Japan – to potentially reduce the correlations 
over 1980 to 2007. Then, for each of four holding periods, we construct the dynamic 
diversification portfolio by applying the fixed mix policy rule to thirty strategies. 
 
Here, we focus on industry level data for several reasons: 1) the globalization of trade and 
money flows leads many firms to broaden their exposure to international markets. These 
firms conduct their own diversification by a variety of approaches, such as moving 
production/manufacturing out of the home country, or international mergers. An example 
is the purchase of Chrysler by Mercedes Benz. The combined firm fits an industrial 
designation, but is difficult to categorize within a single country. (Germany or the U.S.?) 
2) A second reason to focus on industries (rather than individual stocks) is to broaden the 
scope of momentum for institutional investors; there is greater capacity if the core assets 
depict industries as compared with individual stocks. 3) We believe that future asset 
allocation studies (as well as asset-liability management) will need to include industry 
exposure and concentration in order to provide improved risk analytics. 4) With 
introduction of alternative asset classes, such as ETF’s, which enable us to trade 
industries easily, industries chosen by the momentum strategy provide for international 
diversification. 
 
Figure 5 illustrates the investment performance of the dynamic diversification portfolio at 
several leverage levels. Not only the market indices but also the buy-and-hold portfolio is 
located on the right-bottom region compared to the dynamic diversification portfolio. In 
fact, among thirty industry-level momentum strategies that are utilized for the dynamic 
diversification portfolio, only one setting is located on the left-top part, which clearly 
indicates the robustness of its investment performance (See Figure A1 in the appendix).  
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Figure 5 
Performance of Dynamic Diversification Portfolio with Leverage  

Dynamic diversification portfolio is an equally weighted fixed mix portfolio of 30 momentum strategies -- five regions, 
six settings. Each number next to a point on the line represents leverage. 3-month U.S. T-bill is used. The sample 
period is 1980~2006. 
 

 
 
 
 
II.3 Practical Issues Regarding Fixed-Mix Rules 
 
From the derivation of the rebalancing gain, the desirable properties of assets in order to 
achieve rebalancing gain can be summarized as follows. First, suppose two assets in the 
derivation above are perfectly correlated. Then, it can be easily shown that the 
rebalancing gain is zero. From this, it is evident that diversification among assets plays a 
major role to achieve an excess growth rate. This observation suggests that dynamic 
diversification is essential in order to produce extra gains via multi-period approaches. 
Also, as always, diversification provides a source of reducing portfolio risk. Second, 
given a set of independent assets, the rebalancing gain ( 2/)( 22 σηη − ) increases as the 
volatilities of assets increase. To benefit from rebalancing gain, the volatility of each 
asset should be reasonably high. In this context, the traditional Sharpe Ratio might not be 
a good measure for individual asset in terms of multi-period portfolio management, even 
though it remains valid at the portfolio level. Additionally, low transaction costs (fees, 
taxes, etc.) are desirable, since applying the fixed mix policy rule requires portfolio 
rebalancing. In summary, the properties of the best ingredients for the fixed mix rule are: 
1) relatively good performance (positive expected return); 2) relatively low correlations 
among assets; 3) reasonably high volatility; and 4) low transaction costs.  
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Potential obstacles related to the fixed mix approach should be addressed. First, it is 
becoming harder to locate independent or low correlated assets. For instance, oil and corn, 
which were once relatively independent, are now highly correlated, because ethanol is 
manufactured from corn. Also, due to globalization, the correlation of assets across 
countries is becoming higher. Second, even if we are successful in finding a set of 
independent assets with positive returns and high volatilities, independence is likely to 
disappear under extreme conditions; there is much evidence that stock correlations 
dramatically increase (called contagion) when market crashes. Furthermore, it is well-
known that stock returns and volatilities are negatively correlated. Third, since the fixed-
mix model requires portfolio rebalancing, one must consider transaction costs, such as 
capital gain taxes. These circumstances suggest that other policy rules will outperform 
the fixed-mix rule.  In the next section, we take up a systematic approach for discovering, 
and evaluating new policy rules.  
 
 
III. Application of the Dual Strategy to ALM 
 
In this section, we suggest that the dual strategy provides an ideal framework for assisting 
investors who must address future liabilities and goals. A prominent example involves 
the pension arena. Both the traditional defined benefit (DB) and the growing defined 
contribution (DC) plans have been successfully posed as multi-period models. The 
generic domain takes several names, including asset and liability management, dynamic 
financial analysis (DFA) for insurance companies, and enterprise risk management 
(ERM) in the corporate finance setting. As an additional advantage, a multi-period model 
helps investors understand the pros/cons of combining investment and savings 
(contribution) strategies. 
 
A number of successful pension planning systems are based on elements of the dual 
strategy, including the Towers Perrin – Tillinghast system (Mulvey et al., 2000). Also, 
Mulvey and Simsek (2002) present a stochastic program for the asset allocation of a DB 
pension plan. This model takes the cash contributions by the sponsoring entity (company 
or non-profit agency) as given. Contributions arise from two major sources: plan 
sponsor’s own capital and/or possible borrowing. Mulvey et al. (2008) extend the model 
by linking the pension plan with its sponsoring company. In addition to the asset 
allocation decisions, the integrated model addresses: 1) the sponsor’s contribution policy 
and 2) the corporate borrowing policy for deciding whether to borrow funds and what 
proportion of the borrowing should be put into the pension plan. Zhang (2006) extends 
the integrated model by adding the company’s dividend policy as the third corporate 
decision variable and enhances the corporate model by decomposing the company into a 
headquarters and several divisions. Earlier, Peskin (1997) argued that the economic cost 
of a defined-benefit pension plan is the present value of future contributions. In order to 
achieve savings, he showed that it is necessary for corporate sponsors 1) to integrate asset 
allocation and contribution policies and 2) to make significant changes in investment 
policies which include, among others, adopting an appropriate rebalancing rule. 
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We provide an example of the defined benefit pensions for the telecommunication and 
the automobile sectors to illustrate the idea of the dual strategy. Since the passage of the 
Employee Retirement Income Security Act (ERISA) in 1974, the DB pension system in 
the United States has grown from a modest level of assets (less than $100 Billion) to over 
$5 Trillion in 2004. Unfortunately, numerous DB pension trusts in the U. S. (and 
elsewhere) have seen their adequate surpluses disappear during the period 2000 to 2003. 
Simply put, a pension plan is judged to be healthy if the plan’s funding ratio (market 
value of assets to discounted value of liabilities) is greater than 100%. A plan with a low 
funding ratio, less than 80-90%, is called under-funded, leading to several required steps 
by the sponsoring company, including typically a contribution to the pension trust. A 
fully funded trust has a ratio equal to 100%. 
 
The telecommunication sector in the United States possesses a large pension system 
relative to the sector’s market capitalization. Moreover, it has been and will likely 
continue to encounter slow growth. Fortunately, the current overall funding ratio is 
reasonable – roughly 90% in 2005. As an initial step, we set up an anticipatory multi-
stage stochastic program. To simplify the analysis, we treat the sector as a single 
aggregate company. We employ a scenario generator that has been in use by one of the 
major actuarial firms for over a decade. The stochastic program consists of 1000 
scenarios over a nine-year horizon (several hundred thousand nonlinear variables and 
constraints). We have found that a stochastic program consisting of 1000 scenarios is a 
reasonable compromise between model realism and computational costs for pension 
planning problems. In most cases, we advocate that the planning model be rerun on a 
recurring basis, at least once per year or more often if large changes take place in the 
markets. The scenario generator consists of a set of cascading stochastic equations 
(Mulvey et al., 2000), starting with interest rates in several developed countries. 
 
After studying the solutions of the stochastic program for the telecommunication sector, 
we discovered a particular policy rule (called conditional ratios) that could be 
implemented in a Monte Carlo simulation with similar results as the stochastic program 
across the major objectives. A policy that shifted investments to a more conservative 
allocation when certain triggers occur had a beneficial impact on the overall condition of 
the sector and the pension plans. The trigger consists of a combination of funding ratio 
and the ratio of pension assets to market capitalization. To simplify the example, we set 
the default investment strategy to the 70/30 fixed mix (70% equity and 30% bonds). The 
conditional strategy keeps assets in the 70/30 growth mode until a potential problem 
arises as evaluated by the triggers. In fact, over the nine-year horizon, the conditional 
strategy not only protects the pension surplus but also reduces the NPV of contributions 
and maximizes the company’s value at the end of the nine-year planning horizon (Table 
1). In this example, the model develops a sound compromise solution for the diverse 
stakeholders. However, in general, setting priorities of the multi-objectives for the 
integrated system presents a complex and potentially controversial issue and provides a 
direction for future research. Yet, it is important to evaluate the problem in its full 
capability so that the stakeholders will be able to understand the tradeoffs among the 
objectives. 
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Table 1 
Means and Ranges of Objective Function Values for the 

Telecommunication Services Sector Under Two Investment Strategies 
 

  
Expected Final 
Sector Value 

Expected Excess Contribution
Penalty Function 

Probability of 
Insolvency 

  Max Min Mean Max Min Mean Max Min Mean 
Conditional 372.91 335.34 354.23 7.49 0.75 3.48 0.0590 0.0152 0.0381 
Benchmark 372.97 335.47 354.38 10.56 1.09 4.93 0.0672 0.0184 0.0433 

  
Expected NPV of 

Contributions 
Variability of  
Contributions 

Downside Risk on  
Final Funding ratio 

  Max Min Mean Max Min Mean Max Min Mean 
Conditional 31.76 10.27 20.73 18.34 11.19 15.22 0.0800 0.0570 0.0698 
Benchmark 31.69 10.23 20.64 19.02 11.38 15.60 0.0823 0.0580 0.0714 
 
 
The second example case study depicts a more desperate situation than the 
telecommunication industry. Here, we model a hypothetical automobile company. Not 
only is the company in a slow growth domain with a large pension obligation (relative to 
market cap), but the funding ratio is much lower than the telecommunication case, in fact 
about 70%. We attempt to increase the performance of this company by solving an 
anticipatory nine-year stochastic program.  Unfortunately, the recommended solution 
does not improve the fortunes of the company and pension system, relative to benchmark 
strategies such as the 70/30 fixed mix. In many scenarios, the company must make large 
contributions, weakening the sponsoring company, or it reduces contributions, weakening 
the pension trust. 
 
Assisting this company requires enhancing investment performance, relative to that 
obtainable from traditional assets. We employ the concept of an overlay strategy. In this 
case, the overlay strategies employ the futures markets and trend-following rules, 
discussed in section II. An overlay strategy can be implemented in several ways. First, we 
might borrow capital as margin requirements for the futures trades. We call this strategy 
“overlays with borrowing” (as needed for levering the portfolio). Second, we might 
employ the core assets as margin requirements for the futures markets. We implemented 
both strategies in the anticipatory planning model. The calibration of return parameters 
was carried out as before via maximum likelihood estimates based on historical 
performance. Rather than conducting a full optimization model, we deploy the overlay 
strategies as fixed-mix additions to the core policy simulations. 
 
The results appear in Figure 6 and in Table A1 of the Appendix. The first approach 
(overlays with borrowing) has modest or no impact on overall performance. However, the 
second strategy improves the long-term objectives for the pension planning problem, 
such as reducing the net present value and volatility of contribution, while increasing the 
value of the company at the end of the nine-year horizon. There is a modest increase in 
volatility over shorter horizons. In summary, the wider diversification and “cheap” 
leverage available with the second type of overlays improves both the pension trust and 
the sponsoring company over the long-term. The Appendix provides additional evidence 
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of the advantages of the overlay strategies (Mulvey et al., 2007). Also, overlay strategies 
based on trend following rules have been successfully implemented by multi-strategy 
hedge funds, especially the Mt. Lucas Management Company. For the complete 
discussion regarding this subject, see Mulvey et al. (2007). 
 
 

Figure 6 
Improvements by Employing Overlay Strategies for Illustrative Auto Company4 
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IV. Conclusions and Future Research 
 
The proposed dual strategy provides benefits over a standalone stochastic program or 
policy simulator.  As a significant advantage, a policy simulation model can include 
many real-world considerations, such as complex regulations, tax laws, and company 
specific guidelines.  These issues are difficult to embed within a continuous stochastic 
program due to non-differentiability, jump functions, and other complications.  On the 
other hand, a policy simulator requires a predetermined decision/policy rule.  Generally, 
the selection of a policy rule is accomplished by means of long experience and, perhaps, 
tradition.  How can the investor evaluate this rule, relative to other possible rules?  The 
stochastic program (or dynamic program) provides a benchmark.  We say that a policy 
rule that closely approximates the optimal solution values of the stochastic program is 
“optimal” in so far as it will perform well under the developed restrictive conditions.  The 
dual strategy draws advantages from each of the competing frameworks.  
 
What are promising directions for future research?  First, there is much interest in 
developing a systematic approach for discovering robust policy rules, coming out of the 
stochastic programming (or stochastic control) solution.  We showed that a specific 
investment rule (conditional ratios) performs quite well, in comparison to alternative 
                                                 
4 For the detailed explanation of each strategy, see Table A1 in the appendix. 
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rules and to the stochastic program, for the telecommunication industry.  As mentioned, 
we discovered this rule by carefully studying the solution structure of the 5000 scenario 
tree.  However, there are strong advantages, especially as the size of solvable stochastic 
program grows, to automating the discovery process. Further research is needed on this 
topic. 
 
A recurring research topic involves the design of efficient algorithms for solving 
stochastic program and for optimizing policy simulations.  The latter is particularly 
complex due to the presence of noisy data (with sampling and parameter errors).  
Remember that an objective function value generated from a policy simulator depicts an 
output from a statistical experiment and thereby possesses sampling errors. An 
optimizing algorithm must address sampling errors within the search process.  Likewise, 
policy rules by their nature can give rise to non-convex optimization models.  Again, 
efficient search algorithms are needed. 
 
Last, there has been much recent research involving approximate dynamic programs.  
Some recent references are: White and Sofge (1992), Bertsekas and Tsitsiklis (1996), 
Sutton and Barto (1998), Powell (2006) and Infanger (2006).  This research may promote 
further bridges between competing frameworks.  The multi-stage financial planning 
models are among the most difficult in the realm of scientific computing. Therefore, it 
seems likely that a synthesis of approaches will be needed to find robust solutions to 
these important societal problems. 
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Appendix 
 
 

Figure A1 
Performance of Dynamic Diversification Portfolio 

Dynamic diversification portfolio is an equally weighted fixed mix portfolio of 30 momentum strategies -- five regions, 
six settings. Each number next to a point on the line represents leverage. 3-month U.S. T-bill is used. The sample 
period is 1980~2006. 
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Table A1 
Projections of Illustrative Auto Company under Various Benchmarks and under 

two Overlay Strategies 
 

This table displays a list of summary projection results of the illustrative auto company (section 3) under 
three set of strategies: 1) four fixed-mix strategies as benchmarks with varying degrees of risk aversion; 2) 
four overlay strategies via the core portfolio (70% in S&P 500 index and 30% in STRIPS); and 3) four 
overlay strategies via borrowing at the risk-free treasury bill rates. The overlay strategy via the core 
portfolio outperforms the others on most dimensions. 
 

S&P 500 0.4 S&P 500 0.6 S&P 500 0.7 S&P 500 0.8
25-Yr STRIPS 0.6 25-Yr STRIPS 0.4 25-Yr STRIPS 0.3 25-Yr STRIPS 0.2
Commodity 0 Commodity 0 Commodity 0 Commodity 0
Currency 0 Currency 0 Currency 0 Currency 0
Fixed Income 0 Fixed Income 0 Fixed Income 0 Fixed Income 0

Expected Final Company Value (Bill. $) 15.331 16.227 16.425 16.435
Expected Final Plan Surplus (Bill. $) -8.280 -8.188 -7.749 -7.027
Expected Final Funding Ratio 92.15% 92.38% 92.87% 93.64%
Semi-Standard Deviation of Final Funding Ratio 6.80% 6.75% 7.50% 8.68%
Standard Deviation of Final Funding Ratio 10.39% 10.01% 11.31% 13.43%
Standard Deviation of Funding Ratio across All Periods 12.86% 12.75% 13.45% 14.67%
NPV of Contributions (Bill. $) 11.528 10.810 10.668 10.678
Volatility of Contributions (Bill. $) 3.609 3.533 3.610 3.754
Probability of Any Excess Contribution 49.16% 49.68% 50.36% 51.22%
Excess Contribution Penalty Function (Bill. $) 6.332 6.212 6.418 6.801
Probability of Insolvency 45.74% 45.88% 46.32% 46.64%

S&P 500 0.7 S&P 500 0.7 S&P 500 0.7 S&P 500 0.7
25-Yr STRIPS 0.3 25-Yr STRIPS 0.3 25-Yr STRIPS 0.3 25-Yr STRIPS 0.3
Commodity 0.5 Commodity 0.75 Commodity 1 Commodity 1
Currency 0.5 Currency 1.25 Currency 2 Currency 1
Fixed Income 0.5 Fixed Income 1.75 Fixed Income 1 Fixed Income 1

Expected Final Company Value (Bill. $) 24.930 27.419 27.746 27.791
Expected Final Plan Surplus (Bill. $) 1.877 30.287 45.316 28.193
Expected Final Funding Ratio 101.42% 123.02% 133.48% 121.86%
Semi-Standard Deviation of Final Funding Ratio 12.76% 33.22% 45.69% 31.53%
Standard Deviation of Final Funding Ratio 22.07% 58.37% 82.21% 55.56%
Standard Deviation of Funding Ratio across All Periods 18.60% 40.74% 55.04% 38.79%
NPV of Contributions (Bill. $) 3.992 2.126 1.932 1.880
Volatility of Contributions (Bill. $) 2.034 1.568 1.523 1.416
Probability of Any Excess Contribution 25.86% 13.64% 11.46% 12.44%
Excess Contribution Penalty Function (Bill. $) 3.484 2.800 2.770 2.524
Probability of Insolvency 36.46% 33.40% 32.98% 33.14%

Expected Final Company Value (Bill. $) 17.977 14.052 15.158 17.773
Expected Final Plan Surplus (Bill. $) -6.210 -3.688 0.343 -1.330
Expected Final Funding Ratio 94.14% 96.07% 99.73% 98.37%
Semi-Standard Deviation of Final Funding Ratio 9.87% 17.13% 21.10% 16.69%
Standard Deviation of Final Funding Ratio 15.76% 29.40% 39.90% 30.43%
Standard Deviation of Funding Ratio across All Periods 16.09% 24.85% 30.46% 24.52%
NPV of Contributions (Bill. $) 9.340 12.330 11.580 9.503
Volatility of Contributions (Bill. $) 3.506 4.807 4.723 3.937
Probability of Any Excess Contribution 44.24% 50.22% 45.94% 41.36%
Excess Contribution Penalty Function (Bill. $) 6.326 9.697 9.602 7.564
Probability of Insolvency 44.40% 49.20% 47.76% 44.64%

Overlays via Borrowing

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4

Overlays via Core Portfolio

Overlay1 Overlay 2 Overlay 3 Overlay 4

 


